Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.840
1.
Pharmacol Res ; 203: 107176, 2024 May.
Article En | MEDLINE | ID: mdl-38583687

Cannabidiol (CBD), a non-psychotomimetic constituent of Cannabis sativa, has been recently approved for epileptic syndromes often associated with Autism spectrum disorder (ASD). However, the putative efficacy and mechanism of action of CBD in patients suffering from ASD and related comorbidities remain debated, especially because of the complex pharmacology of CBD. We used pharmacological, immunohistochemical and biochemical approaches to investigate the effects and mechanisms of action of CBD in the recently validated Fmr1-Δexon 8 rat model of ASD, that is also a model of Fragile X Syndrome (FXS), the leading monogenic cause of autism. CBD rescued the cognitive deficits displayed by juvenile Fmr1-Δexon 8 animals, without inducing tolerance after repeated administration. Blockade of CA1 hippocampal GPR55 receptors prevented the beneficial effect of both CBD and the fatty acid amide hydrolase (FAAH) inhibitor URB597 in the short-term recognition memory deficits displayed by Fmr1-Δexon 8 rats. Thus, CBD may exert its beneficial effects through CA1 hippocampal GPR55 receptors. Docking analysis further confirmed that the mechanism of action of CBD might involve competition for brain fatty acid binding proteins (FABPs) that deliver anandamide and related bioactive lipids to their catabolic enzyme FAAH. These findings demonstrate that CBD reduced cognitive deficits in a rat model of FXS and provide initial mechanistic insights into its therapeutic potential in neurodevelopmental disorders.


Cannabidiol , Disease Models, Animal , Fragile X Syndrome , Hippocampus , Receptors, Cannabinoid , Recognition, Psychology , Animals , Fragile X Syndrome/drug therapy , Fragile X Syndrome/metabolism , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Receptors, Cannabinoid/metabolism , Male , Recognition, Psychology/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Rats , Fragile X Mental Retardation Protein/metabolism , Fragile X Mental Retardation Protein/genetics , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , Memory/drug effects , Receptors, G-Protein-Coupled/metabolism , Molecular Docking Simulation
2.
Neurochem Int ; 176: 105740, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636905

The benefits of physical exercise (PE) on memory consolidation have been well-documented in both healthy and memory-impaired animals. However, the underlying mechanisms through which PE exerts these effects are still unclear. In this study, we aimed to investigate the role of hippocampal protein synthesis in memory modulation by acute PE in rats. After novel object recognition (NOR) training, rats were subjected to a 30-min moderate-intensity acute PE on the treadmill, while control animals did not undergo any procedures. Using anisomycin (ANI) and rapamycin (RAPA), compounds that inhibit protein synthesis through different mechanisms, we manipulated protein synthesis in the CA1 region of the hippocampus to examine its contribution to memory consolidation. Memory was assessed on days 1, 7, and 14 post-training. Our results showed that inhibiting protein synthesis by ANI or RAPA impaired NOR memory consolidation in control animals. However, acute PE prevented this impairment without affecting memory persistence. We also evaluated brain-derived neurotrophic factor (BDNF) levels after acute PE at 0.5h, 2h, and 12h afterward and found no differences in levels compared to animals that did not engage in acute PE or were only habituated to the treadmill. Therefore, our findings suggest that acute PE could serve as a non-pharmacological intervention to enhance memory consolidation and prevent memory loss in conditions associated with hippocampal protein synthesis inhibition. This mechanism appears not to depend on BDNF synthesis in the early hours after exercise.


Amnesia , Anisomycin , Brain-Derived Neurotrophic Factor , Hippocampus , Physical Conditioning, Animal , Rats, Wistar , Animals , Male , Physical Conditioning, Animal/physiology , Rats , Hippocampus/metabolism , Hippocampus/drug effects , Anisomycin/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/biosynthesis , Amnesia/metabolism , Amnesia/prevention & control , Protein Synthesis Inhibitors/pharmacology , Sirolimus/pharmacology , Protein Biosynthesis/drug effects , Protein Biosynthesis/physiology , Memory Consolidation/drug effects , Memory Consolidation/physiology , Recognition, Psychology/drug effects , Recognition, Psychology/physiology
3.
Exp Brain Res ; 242(5): 1175-1190, 2024 May.
Article En | MEDLINE | ID: mdl-38499659

Parkinson's disease is a degenerative, chronic and progressive disease, characterized by motor dysfunctions. Patients also exhibit non-motor symptoms, such as affective and sleep disorders. Sleep disorders can potentiate clinical and neuropathological features and lead to worse prognosis. The goal of this study was to evaluate the effects of sleep deprivation (SD) in mice submitted to a progressive pharmacological model of Parkinsonism (chronic administration with a low dose of reserpine). Male Swiss mice received 20 injections of reserpine (0.1 mg/kg) or vehicle, on alternate days. SD was applied before or during reserpine treatment and was performed by gentle handling for 6 h per day for 10 consecutive days. Animals were submitted to motor and non-motor behavioral assessments and neurochemical evaluations. Locomotion was increased by SD and decreased by reserpine treatment. SD during treatment delayed the onset of catalepsy, but SD prior to treatment potentiated reserpine-induced catalepsy. Thus, although SD induced an apparent beneficial effect on motor parameters, a delayed deleterious effect on alterations induced by reserpine was found. In the object recognition test, both SD and reserpine treatment produced cognitive deficits. In addition, the association between SD and reserpine induced anhedonic-like behavior. Finally, an increase in oxidative stress was found in hippocampus of mice subjected to SD, and tyrosine hydroxylase immunoreactivity was reduced in substantia nigra of reserpine-treated animals. Results point to a possible late effect of SD, aggravating the deficits in mice submitted to the reserpine progressive model of PD.


Disease Models, Animal , Parkinsonian Disorders , Reserpine , Sleep Deprivation , Animals , Male , Reserpine/pharmacology , Sleep Deprivation/complications , Mice , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/physiopathology , Catalepsy/chemically induced , Oxidative Stress/physiology , Oxidative Stress/drug effects , Tyrosine 3-Monooxygenase/metabolism , Motor Activity/physiology , Motor Activity/drug effects , Recognition, Psychology/physiology , Recognition, Psychology/drug effects , Anhedonia/physiology , Anhedonia/drug effects
4.
Eur J Neurosci ; 59(9): 2260-2275, 2024 May.
Article En | MEDLINE | ID: mdl-38411499

The anterior retrosplenial cortex (aRSC) integrates multimodal sensory information into cohesive associative recognition memories. Little is known about how information is integrated during different learning phases (i.e., encoding and retrieval). Additionally, sex differences are observed in performance of some visuospatial memory tasks; however, inconsistent findings warrant more research. We conducted three experiments using the 1-h delay object-in-place (1-h OiP) test to assess recognition memory retrieval in male and female Long-Evans rats. (i) We found both sexes performed equally in three repeated 1-h OiP test sessions. (ii) We showed infusions of a mixture of muscimol/baclofen (GABAA/B receptor agonists) into the aRSC ~15-min prior to the test phase disrupted 1-h OiP in both sexes. (iii) We assessed the role of aRSC ionotropic glutamate receptors in 1-h OiP retrieval using another squad of cannulated rats and confirmed that infusions of either the competitive AMPA/Kainate receptor antagonist CNQX (3 mM) or competitive NMDA receptor antagonist AP-5 (30 mM) (volumes = 0.50 uL/side) significantly impaired 1-h OiP retrieval in both sexes compared to controls. Taken together, findings challenge reported sex differences and clearly establish a role for aRSC ionotropic glutamate receptors in short-term visuospatial recognition memory retrieval. Thus, modulating neural activity in the aRSC may alleviate some memory processing impairments in related disorders.


Muscimol , Rats, Long-Evans , Recognition, Psychology , Animals , Male , Female , Rats , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Muscimol/pharmacology , GABA-A Receptor Agonists/pharmacology , Baclofen/pharmacology , Memory, Short-Term/drug effects , Memory, Short-Term/physiology , Receptors, Ionotropic Glutamate/metabolism , Receptors, Ionotropic Glutamate/antagonists & inhibitors , Mental Recall/drug effects , Mental Recall/physiology , Excitatory Amino Acid Antagonists/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Sex Characteristics , GABA-B Receptor Agonists/pharmacology
5.
Horm Behav ; 161: 105501, 2024 May.
Article En | MEDLINE | ID: mdl-38368844

Long-term use of anabolic androgenic steroids (AAS) in supratherapeutic doses is associated with severe adverse effects, including physical, mental, and behavioral alterations. When used for recreational purposes several AAS are often combined, and in scientific studies of the physiological impact of AAS either a single compound or a cocktail of several steroids is often used. Because of this, steroid-specific effects have been difficult to define and are not fully elucidated. The present study used male Wistar rats to evaluate potential somatic and behavioral effects of three different AAS; the decanoate esters of nandrolone, testosterone, and trenbolone. The rats were exposed to 15 mg/kg of nandrolone decanoate, testosterone decanoate, or trenbolone decanoate every third day for 24 days. Body weight gain and organ weights (thymus, liver, kidney, testis, and heart) were measured together with the corticosterone plasma levels. Behavioral effects were studied in the novel object recognition-test (NOR-test) and the multivariate concentric square field-test (MCSF-test). The results conclude that nandrolone decanoate, but neither testosterone decanoate nor trenbolone decanoate, caused impaired recognition memory in the NOR-test, indicating an altered cognitive function. The behavioral profile and stress hormone level of the rats were not affected by the AAS treatments. Furthermore, the study revealed diverse AAS-induced somatic effects i.e., reduced body weight development and changes in organ weights. Of the three AAS included in the study, nandrolone decanoate was identified to cause the most prominent impact on the male rat, as it affected body weight development, the weights of multiple organs, and caused an impaired memory function.


Anabolic Agents , Memory Disorders , Nandrolone , Rats, Wistar , Testosterone , Animals , Male , Testosterone/blood , Testosterone/analogs & derivatives , Rats , Nandrolone/analogs & derivatives , Nandrolone/pharmacology , Anabolic Agents/adverse effects , Anabolic Agents/pharmacology , Memory Disorders/chemically induced , Organ Size/drug effects , Trenbolone Acetate/pharmacology , Nandrolone Decanoate/pharmacology , Body Weight/drug effects , Corticosterone/blood , Recognition, Psychology/drug effects
6.
Cereb Cortex ; 33(8): 4806-4814, 2023 04 04.
Article En | MEDLINE | ID: mdl-36156637

The medial prefrontal cortex (mPFC) has been implicated in regulating resistance to the effects of acute uncontrollable stress. We previously showed that mPFC-lesioned animals exhibit impaired object recognition memory after acute exposure to a brief stress that had no effect in normal animals. Here, we used designer receptors exclusively activated by designer drugs to determine how modulating mPFC activity affects recognition-memory performance under stressful conditions. Specifically, animals with chemogenetic excitation or inhibition of the mPFC underwent either a brief ineffective stress (20-min restraint + 20 tail shocks) or a prolonged effective stress (60-min restraint + 60 tail shocks). Subsequent recognition memory tests showed that animals with chemogenetic mPFC inhibition exposed to brief stress showed impairment in an object recognition memory task, whereas those with chemogenetic mPFC excitation exposed to prolonged stress did not. Thus, the present findings the decreased mPFC activity exacerbates acute stress effects on memory function whereas increased mPFC activity counters these stress effects provide evidence that the mPFC bidirectionally modulates stress resistance.


Cognitive Dysfunction , Memory , Prefrontal Cortex , Recognition, Psychology , Stress, Physiological , Stress, Psychological , Animals , Male , Rats , Clozapine/analogs & derivatives , Clozapine/pharmacology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/prevention & control , Electroshock/psychology , Memory/drug effects , Memory/physiology , Prefrontal Cortex/drug effects , Prefrontal Cortex/physiology , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Restraint, Physical/physiology , Stress, Physiological/physiology , Stress, Psychological/complications , Stress, Psychological/physiopathology , Time Factors
7.
Proc Natl Acad Sci U S A ; 119(22): e2203680119, 2022 05 31.
Article En | MEDLINE | ID: mdl-35622887

Noradrenergic activation of the basolateral amygdala (BLA) by emotional arousal enhances different forms of recognition memory via functional interactions with the insular cortex (IC). Human neuroimaging studies have revealed that the anterior IC (aIC), as part of the salience network, is dynamically regulated during arousing situations. Emotional stimulation first rapidly increases aIC activity but suppresses it in a delayed fashion. Here, we investigated in male Sprague-Dawley rats whether the BLA influence on recognition memory is associated with an increase or suppression of aIC activity during the postlearning consolidation period. We first employed anterograde and retrograde viral tracing and found that the BLA sends dense monosynaptic projections to the aIC. Memory-enhancing norepinephrine administration into the BLA following an object training experience suppressed aIC activity 1 h later, as determined by a reduced expression of the phosphorylated form of the transcription factor cAMP response element-binding (pCREB) protein and neuronal activity marker c-Fos. In contrast, the number of perisomatic γ-aminobutyric acid (GABA)ergic inhibitory synapses per pCREB-positive neuron was significantly increased, suggesting a dynamic up-regulation of GABAergic tone. In support of this possibility, pharmacological inhibition of aIC activity with a GABAergic agonist during consolidation enhanced object recognition memory. Norepinephrine administration into the BLA did not affect neuronal activity within the posterior IC, which receives sparse innervation from the BLA. The evidence that noradrenergic activation of the BLA enhances the consolidation of object recognition memory via a mechanism involving a suppression of aIC activity provides insight into the broader brain network dynamics underlying emotional regulation of memory.


Basolateral Nuclear Complex , Emotions , Insular Cortex , Neural Inhibition , Recognition, Psychology , Visual Perception , Animals , Arousal , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/physiology , Cyclic AMP Response Element-Binding Protein/metabolism , Emotions/drug effects , Emotions/physiology , GABA Agonists/pharmacology , Insular Cortex/drug effects , Insular Cortex/physiology , Male , Neural Inhibition/drug effects , Neural Inhibition/physiology , Norepinephrine/administration & dosage , Norepinephrine/pharmacology , Rats , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Visual Perception/physiology
8.
Mol Cell Neurosci ; 120: 103719, 2022 05.
Article En | MEDLINE | ID: mdl-35283305

Pattern separation is a hippocampal process in which highly similar stimuli are recognized as separate representations, and deficits could lead to memory impairments in neuropsychiatric disorders such as schizophrenia. The 5-HT1A receptor (5-HT1AR) is believed to be involved in these hippocampal pattern separation processes. However, in the dorsal raphe nucleus (DRN), the 5-HT1AR is expressed as a somatodendritic autoreceptor, negatively regulates serotonergic signaling, and could thereby counteract the effects of hippocampal postsynaptic 5-HT1A receptors. Therefore, this study aims to identify how pre- and post-synaptic 5-HT1AR activity affects pattern separation. Object pattern separation (OPS) performance was measured in male Wistar rats after both acute and chronic treatment (i.p.) with 5-HT1AR biased agonists F13714 (0.0025 mg/kg acutely, 0.02 mg/kg/day chronically) or NLX-101 (0.08 mg/kg acutely, 0.32 mg/kg/day chronically), which preferentially activate autoreceptors or postsynaptic receptors respectively, for 14 days. Body temperature - a functional correlate of hypothalamic 5-HT1AR stimulation - was measured daily. Additionally, 5-HT1AR density (DRN) and plasticity markers (hippocampus) were assessed. Acute treatment with F13714 impaired OPS performance, whereas chronic treatment normalized this, and a drop in body temperature was found from day 4 onwards. NLX-101 enhanced OPS performance acutely and chronically, and caused an acute drop in body temperature. Chronic NLX-101 treatment increased doublecortin positive neurons in the dorsal hippocampus, while chronic treatment with F13714 resulted in a downregulation of 5-HT1A autoreceptors, which likely reversed the acute impairment in OPS performance. Chronic treatment with NLX-101 appears to have therapeutic potential to improve brain plasticity and OPS performance.


Aminopyridines , Autoreceptors , Hippocampus , Neuronal Plasticity , Pattern Recognition, Physiological , Piperidines , Pyrimidines , Receptor, Serotonin, 5-HT1A , Recognition, Psychology , Serotonin 5-HT1 Receptor Agonists , Aminopyridines/pharmacology , Animals , Autoreceptors/physiology , Hippocampus/drug effects , Hippocampus/physiology , Male , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Pattern Recognition, Physiological/drug effects , Pattern Recognition, Physiological/physiology , Piperidines/pharmacology , Pyrimidines/pharmacology , Rats , Rats, Wistar , Receptor, Serotonin, 5-HT1A/physiology , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin 5-HT1 Receptor Agonists/therapeutic use
9.
Brain Res Bull ; 181: 144-156, 2022 04.
Article En | MEDLINE | ID: mdl-35066096

Hyaluronan (HA) is a core constituent of perineuronal nets (PNNs) that surround subpopulations of neurones. The PNNs control synaptic stabilization in both the developing and adult central nervous system, and disruption of PNNs has shown to reactivate neuroplasticity. We investigated the possibility of memory prolongation by attenuating PNN formation using 4-methylumbelliferone (4-MU), an inhibitor of HA synthesis. Adult C57BL/6 mice were fed with chow containing 5% (w/w) 4-MU for 6 months, at a dose ~6.7 mg/g/day. The oral administration of 4-MU reduced the glycosaminoglycan level in the brain to 72% and the spinal cord to 50% when compared to the controls. Spontaneous object recognition test (SOR) performed at 2, 3, 6 and 7 months showed a significant increase in SOR score in the 6-months treatment group 24 h after object presentation. The effect however did not persist in the washout group (1-month post treatment). Immunohistochemistry confirmed a reduction of PNNs, with shorter and less arborization of aggrecan staining around dendrites in hippocampus after 6 months of 4-MU treatment. Histopathological examination revealed mild atrophy in articular cartilage but it did not affect the motor performance as demonstrated in rotarod test. In conclusion, systemic oral administration of 4-MU for 6 months reduced PNN formation around neurons and enhanced memory retention in mice. However, the memory enhancement was not sustained despite the reduction of PNNs, possibly due to the lack of memory enhancement training during the washout period. Our results suggest that 4-MU treatment might offer a strategy for PNN modulation in memory enhancement.


Aggrecans/drug effects , Central Nervous System/drug effects , Extracellular Matrix/drug effects , Hyaluronic Acid/metabolism , Hymecromone/pharmacology , Neuronal Plasticity/drug effects , Oligodendroglia/drug effects , Recognition, Psychology/drug effects , Administration, Oral , Animals , Behavior, Animal/drug effects , Female , Hymecromone/administration & dosage , Male , Mice , Mice, Inbred C57BL
10.
Sci Rep ; 12(1): 249, 2022 01 07.
Article En | MEDLINE | ID: mdl-34997032

Older adult patients with sepsis frequently experience cognitive impairment. The roles of brain neutrophil gelatinase-associated lipocalin (NGAL) and iron in older sepsis patients remain unknown. We investigated the effects of lipopolysaccharide-induced sepsis on novel object recognition test, NGAL levels, an inflammatory mediator tumor necrosis factor-α (TNFα) levels, and iron ion levels in the hippocampus and cortex of young and aged rats. The effect of an iron chelator deferoxamine pretreatment on aged sepsis rats was also examined. Young sepsis-survivor rats did not show impaired novel object recognition, TNFα responses, or a Fe2+/Fe3+ imbalance. They showed hippocampal and cortical NGAL level elevations. Aged sepsis-survivor rats displayed a decreased object discrimination index, elevation of NGAL levels and Fe2+/Fe3+ ratio, and no TNFα responses. Pretreatment with deferoxamine prevented the reduction in the object recognition of aged sepsis-survivor rats. The elevation in hippocampal and cortical NGAL levels caused by lipopolysaccharide was not influenced by deferoxamine pretreatment. The lipopolysaccharide-induced Fe2+/Fe3+ ratio elevation was blocked by deferoxamine pretreatment. In conclusion, our findings suggest that iron homeostasis in the cortex and hippocampus contributes to the maintenance of object recognition ability in older sepsis survivors.


Behavior, Animal , Brain/enzymology , Cognitive Dysfunction/enzymology , Iron/metabolism , Lipocalin-2/metabolism , Recognition, Psychology , Sepsis/enzymology , Age Factors , Animals , Behavior, Animal/drug effects , Brain/drug effects , Brain/physiopathology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/psychology , Deferoxamine/pharmacology , Disease Models, Animal , Homeostasis , Male , Open Field Test , Rats, Sprague-Dawley , Recognition, Psychology/drug effects , Sepsis/drug therapy , Sepsis/physiopathology , Sepsis/psychology , Siderophores/pharmacology , Tumor Necrosis Factor-alpha/metabolism
11.
Behav Brain Res ; 416: 113576, 2022 01 07.
Article En | MEDLINE | ID: mdl-34506840

Patients with chronic pain often complain about memory impairments. Experimental studies have shown neuroprotective effects of Carbamylated erythropoietin (Cepo-Fc) in the treatment of cognitive dysfunctions. However, little is currently known about its precise molecular mechanisms in a model of inflammatory pain. Therefore, this study aimed to investigate neuroprotective effects of Cepo-Fc against cognitive impairment induced by the inflammatory model of Complete Freund's Adjuvant (CFA). Carbamylated erythropoietin was administrated Intraperitoneally (i.p) on the day CFA injection, continued for a 21-days period. After conducting the behavioral tests (thermal hyperalgesia and novel object recognition test), western blot and ELISA were further preformed on days 0, 7, and 21. The results of this study indicate that Cepo-Fc can effectively reverse the CFA induced thermal hyperalgesia and recognition memory impairment. Additionally, Cepo-Fc noticeably decreased the hippocampal microglial expression, production of hippocampal IL-1ß, and hippocampal apoptosis and necroptosis induced by the inflammatory pain. Therefore, our findings suggest that neuroprotective effects of Cepo-Fc in the treatment of pain related recognition memory impairment may be mediated through reducing hippocampal microglial expression as well as IL-1ß production.


Erythropoietin/analogs & derivatives , Freund's Adjuvant/pharmacology , Memory/drug effects , Microglia/metabolism , Neuroprotective Agents/pharmacology , Pain/metabolism , Recognition, Psychology/drug effects , Animals , Disease Models, Animal , Erythropoietin/pharmacology , Hippocampus/metabolism , Hyperalgesia/chemically induced , Male , Memory Disorders/prevention & control , Rats
12.
Behav Brain Res ; 416: 113578, 2022 01 07.
Article En | MEDLINE | ID: mdl-34508769

Positive allosteric modulators (PAMs) of α5GABAA receptors (α5GABAARs) are emerging as potential therapeutics for a range of neuropsychiatric disorders. However, their role in memory processing of healthy animals is not sufficiently examined. We tested the effects of MP-III-022 (1 mg/kg, 2.5 mg/kg and 10 mg/kg), a PAM known to be selective for α5GABAARs and devoid of prominent side-effects, in different behavioral paradigms (Morris water maze, novel object recognition test and social novelty discrimination) and on GABRA5 expression in Wistar rats, 30 min and 24 h after intraperitoneal treatment administration. The lowest dose tested worsened short-term object memory. The same dose, administered two times in a span of 24 h, improved spatial and impaired object and, at a trend level, social memory. The highest dose had a detrimental effect on all types of long-term memory (object memory at a trend level) and short-term spatial memory, but improved short-term object and social memory. Distinct sets of expression changes were detected in both prefrontal cortex and two regions of the hippocampus, but the latter ones could be assessed as more consequential. An increase of GABRA5 mRNA in CA2 occurred in parallel with improvement of object and social, but impairment of spatial memory, while the opposite happened with a trend level change in CA1. Our study demonstrates the variability of the roles of the α5GABAAR based on its level of expression and localization, in dependence on the type and protocol of cognitive tasks, as well as the respective timing of pharmacological modulation and testing.


Hippocampus/drug effects , Memory, Long-Term/drug effects , Memory, Short-Term/drug effects , Prefrontal Cortex/drug effects , Receptors, GABA-A/metabolism , Spatial Memory/drug effects , Animals , Dose-Response Relationship, Drug , Male , Rats , Rats, Wistar , Recognition, Psychology/drug effects
13.
Brain Res Bull ; 178: 120-130, 2022 01.
Article En | MEDLINE | ID: mdl-34838642

In addition to motor dysfunction, cognitive impairments have been reported to occur in patients with early-stage Parkinson's disease (PD). In this study, we examined a PD mouse model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). This treatment led to the degeneration of nigrostriatal dopaminergic neurons in mice, a phenomenon that is consistent with previous studies. Besides, spatial memory and object recognition of MPTP-treated mice were impaired, as denoted by the Morris water maze (MWM) and novel object recognition (NOR) tests, respectively. Moreover, hippocampal synaptic plasticity (long-term potentiation and depotentiation) and the levels of synaptic proteins in hippocampus were decreased after MPTP treatment. We also found that MPTP resulted in the microglial activation and an inflammatory response in the striatum and hippocampus. Mammalian asparagine endopeptidase (AEP), a cysteine lysosomal protease, is involved in the cleavage and activation of Toll-like receptors (TLRs). The deletion of AEP can inhibit TLR4 in a mouse model of Alzheimer's disease, and TLR4 is upregulated in PD, inducing microglial activation and inflammation. We found that AEP deletion provided greater resistance to the toxic effects of MPTP. AEP knockout ameliorated the cognition and the synaptic plasticity defects in the hippocampus. Furthermore, AEP deletion decreased the expression of TLR4 and reduced microglial activation and the levels of several proinflammatory cytokines. Thus, we suggest that AEP plays a role in the inflammation induced by MPTP, and TLR4 might also involve in this process. AEP deletion could be a possible treatment strategy for the cognitive deficits of PD.


1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Cognitive Dysfunction/chemically induced , Cysteine Endopeptidases/metabolism , Dopamine Agents/pharmacology , Dopaminergic Neurons/drug effects , MPTP Poisoning , Neuroinflammatory Diseases/chemically induced , Neuronal Plasticity/drug effects , Toll-Like Receptor 4/drug effects , Animals , Behavior, Animal/drug effects , Disease Models, Animal , MPTP Poisoning/metabolism , MPTP Poisoning/physiopathology , Mice , Mice, Knockout , Recognition, Psychology/drug effects , Spatial Learning/drug effects , Spatial Memory/drug effects
14.
Behav Brain Res ; 419: 113677, 2022 02 15.
Article En | MEDLINE | ID: mdl-34818568

In long-term spaceflight, astronauts will face unique cognitive loads and social challenges which will be complicated by communication delays with Earth. It is important to understand the central nervous system (CNS) effects of deep spaceflight and the associated unavoidable exposure to galactic cosmic radiation (GCR). Rodent studies show single- or simple-particle combination exposure alters CNS endpoints, including hippocampal-dependent behavior. An even better Earth-based simulation of GCR is now available, consisting of a 33-beam (33-GCR) exposure. However, the effect of whole-body 33-GCR exposure on rodent behavior is unknown, and no 33-GCR CNS countermeasures have been tested. Here astronaut-age-equivalent (6mo-old) C57BL/6J male mice were exposed to 33-GCR (75cGy, a Mars mission dose). Pre-/during/post-Sham or 33-GCR exposure, mice received a diet containing a 'vehicle' formulation alone or with the antioxidant/anti-inflammatory compound CDDO-EA as a potential countermeasure. Behavioral testing beginning 4mo post-irradiation suggested radiation and diet did not affect measures of exploration/anxiety-like behaviors (open field, elevated plus maze) or recognition of a novel object. However, in 3-Chamber Social Interaction (3-CSI), CDDO-EA/33-GCR mice failed to spend more time exploring a holder containing a novel mouse vs. a novel object (empty holder), suggesting sociability deficits. Also, Vehicle/33-GCR and CDDO-EA/Sham mice failed to discriminate between a novel stranger vs. familiarized stranger mouse, suggesting blunted preference for social novelty. CDDO-EA given pre-/during/post-irradiation did not attenuate the 33-GCR-induced blunting of preference for social novelty. Future elucidation of the mechanisms underlying 33-GCR-induced blunting of preference for social novelty will improve risk analysis for astronauts which may in-turn improve countermeasures.


Behavior, Animal , Cognitive Dysfunction , Cosmic Radiation/adverse effects , Oleanolic Acid/analogs & derivatives , Radiation Exposure/adverse effects , Recognition, Psychology , Social Behavior , Animals , Behavior, Animal/drug effects , Behavior, Animal/radiation effects , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Oleanolic Acid/pharmacology , Recognition, Psychology/drug effects , Recognition, Psychology/radiation effects
15.
Pharmacol Biochem Behav ; 211: 173300, 2021 12.
Article En | MEDLINE | ID: mdl-34798097

The spontaneous object recognition (SOR) task is one of the most widely used behavioral protocols to assess visual memory in animals. However, only recently was it shown that nonhuman primates also perform well on this task. Here we further characterized this new monkey recognition memory test by assessing the performance of adult marmosets after an acute systemic administration of two putative amnesic agents: the competitive muscarinic acetylcholine receptor antagonist scopolamine (SCP; 0.05 mg/kg) and the noncompetitive N-methyl-d-aspartate glutamate receptor antagonist MK-801 (0.015 mg/kg). We also determined whether the acetylcholinesterase inhibitor donepezil (DNP; 0.50 mg/kg), a clinically-used cognitive enhancer, reverses memory deficits caused by either drug. The subjects had an initial 10 min sample trial where two identical neutral objects could be explored. After a 6 h retention interval, recognition was based on an exploratory preference for a new rather than familiar object during a 10 min test trial. Both SCP and MK-801 impaired the marmosets' performance on the SOR task, as both objects were explored equivalently. Co-administration of 0.50 mg/kg of DNP reversed the SCP- but not the MK-801-induced memory deficit. These results indicate that cholinergic and glutamatergic pathways mediate object recognition memory in the monkey SOR task.


Dizocilpine Maleate/pharmacology , Open Field Test/drug effects , Recognition, Psychology/drug effects , Scopolamine/pharmacology , Acetylcholinesterase/metabolism , Animals , Callithrix/metabolism , Donepezil/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Female , Haplorhini/metabolism , Male , Memory/drug effects , Memory Disorders/drug therapy , Memory Disorders/metabolism , Muscarinic Antagonists/pharmacology , Nootropic Agents/pharmacology , Receptors, Muscarinic/metabolism
16.
Sci Rep ; 11(1): 21637, 2021 11 04.
Article En | MEDLINE | ID: mdl-34737364

Understanding of emotions and intentions are key processes in social cognition at which serotonin is an important neuromodulator. Its precursor is the essential amino acid tryptophan (TRP). Reduced TRP availability leads to weaker impulse control ability and higher aggression, while TRP supplementation promotes confidence. In a double-blind placebo-controlled fMRI study with 77 healthy adults, we investigated the influence of a 4 week TRP enriched diet and an acute 5-hydroxytryptophan (5-HTP) intake on two social-cognitive tasks, a moral evaluation and an emotion recognition task. With 5-HTP, immoral behavior without negative consequences was rated as more reprehensible. Additionally, during story reading, activation in insula and supramarginal gyrus was increased after TRP intake. No significant effects of TRP on emotion recognition were identified for the whole sample. Importantly, emotion recognition ability decreased with age which was for positive emotions compensated by TRP. Since the supramarginal gyrus is associated with empathy, pain and related information integration results could be interpreted as reflecting stricter evaluation of negative behavior due to better integration of information. Improved recognition of positive emotions with TRP in older participants supports the use of a TRP-rich diet to compensate for age related decline in social-cognitive processes.


Emotions/drug effects , Social Cognition , Tryptophan/pharmacology , 5-Hydroxytryptophan/metabolism , 5-Hydroxytryptophan/pharmacology , Adult , Affect/drug effects , Cognition/drug effects , Dietary Supplements , Double-Blind Method , Female , Healthy Volunteers , Humans , Magnetic Resonance Imaging/methods , Male , Neurotransmitter Agents/metabolism , Neurotransmitter Agents/pharmacology , Placebos , Recognition, Psychology/drug effects , Serotonin/metabolism , Tryptophan/metabolism
17.
Nat Commun ; 12(1): 6054, 2021 10 18.
Article En | MEDLINE | ID: mdl-34663784

It is commonly assumed that episodic memories undergo a time-dependent systems consolidation process, during which hippocampus-dependent memories eventually become reliant on neocortical areas. Here we show that systems consolidation dynamics can be experimentally manipulated and even reversed. We combined a single pharmacological elevation of post-encoding noradrenergic activity through the α2-adrenoceptor antagonist yohimbine with fMRI scanning both during encoding and recognition testing either 1 or 28 days later. We show that yohimbine administration, in contrast to placebo, leads to a time-dependent increase in hippocampal activity and multivariate encoding-retrieval pattern similarity, an indicator of episodic reinstatement, between 1 and 28 days. This is accompanied by a time-dependent decrease in neocortical activity. Behaviorally, these neural changes are linked to a reduced memory decline over time after yohimbine intake. These findings indicate that noradrenergic activity shortly after encoding may alter and even reverse systems consolidation in humans, thus maintaining vividness of memories over time.


Arousal , Hippocampus/drug effects , Norepinephrine/pharmacology , Yohimbine/pharmacology , Adult , Double-Blind Method , Female , Hippocampus/physiology , Humans , Magnetic Resonance Imaging , Male , Memory Consolidation/drug effects , Memory, Episodic , Memory, Long-Term/drug effects , Memory, Long-Term/physiology , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Young Adult
18.
Biomed Pharmacother ; 144: 112369, 2021 Dec.
Article En | MEDLINE | ID: mdl-34715446

As an N-methyl-D-aspartate (NMDA) receptor inhibitor, ketamine has become a popular recreational substance and currently is used to address treatment-resistant depression. Since heavy ketamine use is associated with persisting psychosis, cognitive impairments, and neuronal damage, the safety of ketamine treatment for depression should be concerned. The nutrient supplement betaine has been shown to counteract the acute ketamine-induced psychotomimetic effects and cognitive dysfunction through modulating NMDA receptors. This study aimed to determine whether the adjunctive or subsequent betaine treatment would improve the enduring behavioral disturbances and hippocampal synaptic abnormality induced by repeated ketamine exposure. Mice received ketamine twice daily for 14 days, either combined with betaine co-treatment or subsequent betaine post-treatment for 7 days. Thereafter, three-chamber social approach test, reciprocal social interaction, novel location/object recognition test, forced swimming test, and head-twitch response induced by serotonergic hallucinogen were monitored. Data showed that the enduring behavioral abnormalities after repeated ketamine exposure, including disrupted social behaviors, recognition memory impairments, and increased depression-like and hallucinogen-induced head-twitch responses, were remarkably improved by betaine co-treatment or post-treatment. Consistently, betaine protected and reversed the reduced hippocampal synaptic activity, such as decreases in field excitatory post-synaptic potentiation (fEPSP), long-term potentiation (LTP), and PSD-95 levels, after repeated ketamine treatment. These results demonstrated that both co-treatment and post-treatment with betaine could effectively prevent and reverse the adverse behavioral manifestations and hippocampal synaptic plasticity after repeated ketamine use, suggesting that betaine can be used as a novel adjunct therapy with ketamine for treatment-resistant depression and provide benefits for ketamine use disorders.


Antipsychotic Agents/pharmacology , Behavior, Animal/drug effects , Betaine/pharmacology , Hippocampus/drug effects , Neuronal Plasticity/drug effects , Psychoses, Substance-Induced/prevention & control , Synaptic Transmission/drug effects , Animals , Cognition/drug effects , Disease Models, Animal , Disks Large Homolog 4 Protein/metabolism , Excitatory Amino Acid Antagonists , Excitatory Postsynaptic Potentials/drug effects , Female , Hippocampus/metabolism , Hippocampus/physiopathology , Ketamine , Locomotion/drug effects , Male , Mice, Inbred ICR , Open Field Test/drug effects , Psychoses, Substance-Induced/etiology , Psychoses, Substance-Induced/physiopathology , Psychoses, Substance-Induced/psychology , Recognition, Psychology/drug effects , Social Behavior , Swimming
19.
PLoS One ; 16(9): e0257986, 2021.
Article En | MEDLINE | ID: mdl-34587208

The first symptoms of schizophrenia (SCHZ) are usually observed during adolescence, a developmental period during which first exposure to psychoactive drugs also occurs. These epidemiological findings point to adolescence as critical for nicotine addiction and SCHZ comorbidity, however it is not clear whether exposure to nicotine during this period has a detrimental impact on the development of SCHZ symptoms since there is a lack of studies that investigate the interactions between these conditions during this period of development. To elucidate the impact of a short course of nicotine exposure across the spectrum of SCHZ-like symptoms, we used a phencyclidine-induced adolescent mice model of SCHZ (2.5mg/Kg, s.c., daily, postnatal day (PN) 38-PN52; 10mg/Kg on PN53), combined with an established model of nicotine minipump infusions (24mg/Kg/day, PN37-44). Behavioral assessment began 4 days after the end of nicotine exposure (PN48) using the following tests: open field to assess the hyperlocomotion phenotype; novel object recognition, a declarative memory task; three-chamber sociability, to verify social interaction and prepulse inhibition, a measure of sensorimotor gating. Phencyclidine exposure evoked deficits in all analyzed behaviors. Nicotine history reduced the magnitude of phencyclidine-evoked hyperlocomotion and impeded the development of locomotor sensitization. It also mitigated the deficient sociability elicited by phencyclidine. In contrast, memory and sensorimotor gating deficits evoked by phencyclidine were neither improved nor worsened by nicotine history. In conclusion, our results show for the first time that nicotine history, restricted to a short period during adolescence, does not worsen SCHZ-like symptoms evoked by a phencyclidine-induced mice model.


Behavior, Animal/drug effects , Motor Activity/drug effects , Nicotine/pharmacology , Recognition, Psychology/drug effects , Schizophrenia/drug therapy , Sensory Gating/drug effects , Animals , Disease Models, Animal , Female , Locomotion/drug effects , Male , Mice , Nicotine/therapeutic use , Phencyclidine , Schizophrenia/chemically induced
20.
Biochem Biophys Res Commun ; 579: 62-68, 2021 11 19.
Article En | MEDLINE | ID: mdl-34587556

Urocanic acid (UCA) is an endogenous small molecule that is elevated in skin, blood and brain after sunlight exposure, mainly playing roles in the periphery systems. Few studies have investigated the role of UCA in the central nervous system. In particular, its role in memory consolidation and reconsolidation is still unclear. In the present study, we investigated the effect of intraperitoneal injection of UCA on memory consolidation and reconsolidation in a novel object recognition memory (ORM) task. In the consolidation version of the ORM task, the protocol involved three phases: habituation, sampling and test. UCA injection immediately after the sampling period enhanced ORM memory performance; UCA injection 6 h after sampling did not affect ORM memory performance. In the reconsolidation version of the ORM task, the protocol involved three phases: sampling, reactivation and test. UCA injection immediately after reactivation enhanced ORM memory performance; UCA injection 6 h after reactivation did not affect ORM memory performance; UCA injection 24 h after sampling without reactivation did not affect ORM memory performance. This UCA-enhanced memory performance was not due to its effects on nonspecific responses such as locomotor activity and exploratory behavior. The results suggest that UCA injection enhances consolidation and reconsolidation of an ORM task, which further extends previous research on UCA effects on learning and memory.


Habituation, Psychophysiologic/drug effects , Learning/drug effects , Memory Consolidation/drug effects , Recognition, Psychology/drug effects , Urocanic Acid/pharmacology , Animals , Behavior, Animal , Brain Mapping , Handling, Psychological , Locomotion , Male , Mice , Mice, Inbred ICR
...